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Abstract: We consider the problem of stabilizing a control system using a coarse state quantizer
in the presence of time delays. We assume the quantizer has an adjustable “center” and “zoom”
parameters, and employ an alternating “zoom out”/“zoom in” mechanism in order to achieve a
large region of attraction while having the system converge to a small region around the origin.
This mechanism is adopted from our previous work where delays were not considered. Here we
show that the control system, using the same mechanism and without making any changes in
order to accommodate delays explicitly, remains stable under small delays. The main tool we
use to prove the result is the nonlinear small-gain theorem.
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1. INTRODUCTION

Networked control systems are characterized by simul-
taneous presence of several communication constraints,
such as quantization, time scheduling, time delays, packet
dropouts, interference, and so on. While early work focused
on studying just one of these aspects, more recently results
able to handle two or more are beginning to emerge (see,
e.g., Heemels et al. (2009) and the references therein). In
this paper we address two of the phenomena mentioned
above, namely, state quantization and time delays.

The approach described here has its roots in two related
lines of recent work. The first relevant contribution is the
method for stabilizing nonlinear systems with quantization
and delays presented in Liberzon (2006). The analysis
in Liberzon (2006) centers around the concept of input-to-
state stability (ISS) and an associated small-gain theorem,
and is based on the approach of Teel (1998). An important
drawback of the result given in Liberzon (2006), however,
is that it does not attempt to minimize the data rate and
so the bound on the number of quantization regions that
it requires is very conservative. On the other hand, there
have been many results on quantized stabilization with
minimal data rate. In the context of nonlinear systems,
an ISS control framework was developed in Liberzon and
Hespanha (2005) and subsequently refined in Sharon and
Liberzon (2010) to obtain ISS with respect to external
disturbances. However, these results do not allow the
presence of time delays.

Thus, the contribution of the present work is essentially
to extend the method of Sharon and Liberzon (2010) to
the case where (possibly time-varying) delays are present
in addition to state quantization. Although we assume
there are no external disturbances in this paper, we do
rely on the ISS property which we established in Sharon
and Liberzon (2010) after we show that error signals
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which arise due to delays can be regarded as external
disturbances. The ISS small-gain analysis employed in this
paper is similar in spirit to that used in Liberzon (2006),
but it becomes more challenging due to the dynamics
of the quantizer which are necessary to achieve minimal
data rate (in Liberzon (2006) only a static quantizer was
considered). We believe that, by virtue of being able to
handle both quantization and delays while enforcing a
minimal data rate, our result will be of greater use for
analysis and design of networked control systems. In this
paper we consider linear plant dynamics, but our method
is nonlinear in nature and we expect it to naturally extend
to suitable nonlinear systems along the lines of (Sharon
and Liberzon, 2010, Section VI).

Among other noteworthy references dealing with quanti-
zation and delays, using approaches different from ours,
we mention Fridman and Dambrine (2009), De Persis and
Mazenc (2009), and Sailer and Wirth (2009). The first two
of these papers employ Lyapunov-Krasovskii functionals
for linear and nonlinear systems, respectively, while the
last one handles nonlinear systems by sending time infor-
mation along with the encoded state.

The outline of this paper is as follows: In §2 we define the
quantized and delayed control system which we address in
this paper; in §3 we recall the controller we developed in
Sharon and Liberzon (2010); in §4 we present the main
result of this paper; §5 is dedicated to proving the main
result; concluding remarks are in §6.

2. PROBLEM FORMULATION

The system we consider consists of three components: the
plant, the quantizer, and the controller. The continuous-
time plant we are to stabilize is as follows (t ∈ R≥0):

ẋ (t) = Ax (t) +Bu (t) (1)

where x ∈ Rn is the state and u ∈ Rm is the control input.



The quantizer samples the state of the plant every Ts
seconds and generates the information for the controller,
z : {kTs |k ∈ Z≥0 } → Rny :

z (kTs) = Q (x (kTs) ; c (kTs) , µ (kTs)) , (2)

where c : {kTs |k ∈ Z≥0 } → Rn and µ : {kTs |k ∈ Z≥0 } →
R>0 are quantization parameters andQ is the quantization
function. For convenience we will use the notation zk

.
=

z (kTs), and similarly for other variables.

We will present our results using the following (square)
quantizer. We assume N is an odd number, N ≥ 3,
which counts the number of quantization regions per state

dimension. The quantizer is denoted by (Q1, . . . , Qn)
T

=
Q (x; c, µ) where each scalar component is defined as
follows:

Qi (x; c, µ)
.
= ci + 2µ (3)

×

{
(−N + 1)/2 xi − ci ≤ (−N + 2)µ
(N − 1)/2 (N − 2)µ < xi − ci
d(xi − (ci + µ)) / (2µ)e otherwise.

We will refer to c as the center of the quantizer, and to
µ as the zoom factor. Note that what will actually be
transferred from the quantizer to the controller will be an
index to one of the quantization regions. The controller,
which either generates the values c and µ and shares them
with the quantizer or knows the rule by which they are
generated, will use this information to convert the received
index to the value of Q as given in (3). This setup is the
same as in Sharon and Liberzon (2010).

Due to delays, for every k ∈ Z≥0 the controller receives
the information zk = z (kTs) only at time kTs + δk
where δk ∈ [0, Ts) is the delay. The delay is unknown to
the controller and it does not need to be fixed. We set
δmax

.
= supk≥0 δk.

In this paper we will use the ∞-norm unless other-
wise specified. For vectors, |x| .= |x|∞

.
= maxi |xi|. For

continuous-time signals, ‖w‖[t1,t2]
.
= maxt∈[t1,t2] |w(t)|∞,

‖w‖ .
= ‖w‖[0,∞). For discrete-time signals, ‖z‖{k1...k2}

.
=

maxk∈{k1...k2} |zk|∞, ‖z‖ .
= ‖z‖{0...∞}. For matrices we

use the induced norm corresponding to the specified
norm (∞-norm if none specified). For piecewise contin-
uous signals we will use the superscripts + and − to
denote the right and left continuous limits, respectively:
x+
k

.
= x+ (kTs)

.
= limt↘0 x (kTs + t), x−k

.
= x− (kTs)

.
=

limt↗0 x (kTs + t).

3. CONTROLLER DESIGN

We implement the same controller as in Sharon and
Liberzon (2010). One of the tasks of the controller is
to generate the state estimate, x̂ (t), for which we will
use the notation x̂k

.
= x̂ (kTs + δk). The controller keeps

and updates a discrete time step variable, k ∈ N, whose
value will correspond to the current sampling time of the
continuous system. When a new measurement is produced
at times kTs, it may be used to update the state estimate
x̂k where k is the discrete time step. At each discrete
time step, the controller will operate in one of three
modes: capture, measurement update or escape detection.
The current mode will be stored in the variable mode(k) ∈
{capture,update,detect}. The controller will also use
pk ∈ Z and saturated(k) ∈ {true, false} as auxiliary

variables. The variable pk counts the number of sampling
times at which the controller was in the measurement
update mode since the last sampling time at which it was
either in the capture mode or the escape detection mode.
We note that the difference between the measurement
update mode and the escape detection mode is that in
the former we set the quantizer so as to minimize the
estimation error, but this comes at the expense of not
being able to detect saturation.

We assume the control system is activated at k = 0
(t = 0). We initialize x̂ (0) = 0, mode(0) = capture,
p0 = 0, and µ0 = s, where s is a positive constant
which will be regarded as a design parameter. We also
use the following design parameters: α ∈ R>0, Ωout ∈ R
such that Ωout >

∥∥eTsA∥∥, and P ∈ Z such that P ≥ 1.
We refer the reader to (Sharon and Liberzon, 2007, §V)
for a detailed qualitative discussion on how each design
parameter affects the system performance. The last design
parameter is the static feedback control law, K, which
should be chosen such that A+BK is Hurwitz.

On the time interval between the arrivals of new mea-
surements, t ∈ [kTs + δk, (k + 1)Ts + δk+1], the controller
continuously updates the state estimate and the control
input based on the nominal system dynamics:

˙̂x(t) = Ax̂(t) +Bu (t) u (t) = Kx̂ (t) . (4)

Whenever a new measurement is received from the quan-
tizer at time kTs + δk, the controller executes sequentially
Algorithm 1–Algorithm 5:

Algorithm 1 Preliminaries

if ∃i such that (zk)i = (ck)i ± (N − 1)µk then
set saturated(k) = true

else
set saturated(k) = false

end if
mode(k + 1) = mode(k)

Algorithm 2 capture mode

if mode(k) = capture then
set pk = 0
if not saturated(k) then

update the state estimate: x̂ (kTs + δk) = zk
set mode(k + 1) = update

end if
end if

Algorithm 3 measurement update mode

if mode(k) = update then
set pk = pk−1 + 1
update the state estimate: x̂ (kTs + δk) = zk
if pk = P − 1 then

set mode(k + 1) = detect
end if

end if

4. MAIN RESULT

Let µ′0 = 1, µk =
(∥∥eTsA∥∥µ′k−1 + α

)
/N , k = 1, . . . , P − 1,

µ′P =
(∥∥eTsA∥∥µ′P−1 + α

)
/ (N − 2). If µ′P < 1 then we

say that the design parameter α satisfies the convergence
property. In (Sharon and Liberzon, 2010, Lemma 1) we



Algorithm 4 escape detection mode

if mode(k) = detect then
if not saturated(k) then

update the state estimate: x̂ (kTs + δk) = zk
set pk = 0
set mode(k + 1) = update

end if
else

set pk = 0 and µk = s
switch to capture mode: set mode(k + 1) = capture

end if

Algorithm 5 preparing for next sampling

if mode(k + 1) = capture then
set µk+1 = Ωoutµk

else if mode(k + 1) = update then
set µk+1 = (‖Ad‖µk + α‖µk−pk‖) (N)

else if mode(k) = detect then
set µk+1 = (‖Ad‖µk + α‖µk−pk‖) (N − 2)

end if
set ck+1 = exp (Ts (A+BK)) x̂ (kTs + δk)

proved that a necessary and sufficient condition for the
existence of such an α is

∥∥eTsA∥∥ /N < 1.

Theorem 1. Given an implementation of the controller
above with any valid choice for the design parameters
such that α satisfies the convergence property, the closed
loop system will have the following semiglobal stability
property: For every xmax ≥ 0, there exists a sufficiently
small but strictly positive δ̄max such that if δmax ≤ δ̄max

then the following bound, ∀t ≥ 0:

|x (t)| ≤ β (|x (0)| , t) + γ (δmax) (5)

holds whenever |x (0)| ≤ xmax, where the function β is of
class KL 1 (β ∈ KL) and γ is of class K (γ ∈ K).

Remark : Known results on delays, Liberzon (2006) for
example, provide what can be interpreted as a more
general result than (5), in which the time 0 is replaced
with t0 and the bound holds for arbitrary t0. In fact, an
intermediate step in proving Theorem 1 (see (31) below)
does provide a similar result which holds for arbitrary t0.
However, results for systems with delays which hold for
arbitrary t0 require to know a history of the state over
some nonzero time interval. By constraining ourselves to
t0 = 0 we are able to get a bound which only depends on
the state at this time instance.

5. PROOF

We start with a brief overview of the proof. In addition to
the state signal, x (t), we define a state estimation error
signal, x̃ (t) = x̂ (t)−x (t− δ) (the explicit dependence of δ
on t will be provided in the proof itself). We also define two
additional signals, θx (t) = x (t− δ) − x (t) and θe (t) =
x̃ (t− δ) − x̃ (t). We use a small-gain argument between
x and θx in Lemma 3 to show that for a sufficiently
small delay, there exists an ISS relation between the

1 A function α : [0,∞) → [0,∞) is said to be of class K if it is
continuous, strictly increasing, and α(0) = 0. A function α : [0,∞)→
[0,∞) is said to be of class K∞ if it is of class K and also unbounded.
A function β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL if
β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to 0 as
t→∞ for each fixed s ≥ 0.

state estimation error signal (as the only input) and
the state signal. We establish that the two signals θx (t)
and θe (t) enter the system as external disturbances,
and recall in Corollary 4 our previous result that the
state estimation error signal posses the ISS property with
respect to external disturbances. We then use a small-gain
argument between x̃ and θe in Lemma 8 to show that for
a sufficiently small delay, there exists a local ISS relation
between the state signal (as the only input) and the state
estimation error signal. Finally, in the proof of Theorem
1 we use another small-gain argument between these two
established ISS relations to derive the desired result.

We define two additional classes of functions. We say that
a function β (ν, t;µ) if of class KL when as a function of
its first two arguments with the third argument fixed, it
is of class KL, and it is a continuous function of its third
argument when the first two arguments are fixed. We say
that a function γ (ν;µ) if of class K∞ when as a function
of its first argument with the second argument fixed, it is
of class K∞, and it is a continuous function of its second
argument when the first argument is fixed. We adopt the
following notation from Teel (1998): xd (t)

.
= ‖x‖[t−∆,t]

and x̃d (t)
.
= ‖x̃‖[t−∆,t] where

∆
.
= 2Ts + δmax.

We start with a technical lemma:

Lemma 2. Let a system with state x satisfy the following
relation, ∀t ≥ t0 ≥ ∆:

|x (t)| ≤ βx (|x (t0)| , t− t0)+γx

(
‖xd‖[t0,t]

)
+γw

(
‖w‖[t0,t]

)
(6)

where βx ∈ KL, and γx, γw ∈ K∞. If γx (r) < λr for some
λ < 1 then for every function γ ∈ K∞ such that

γ (ν) ≥

(
1 +

√
λ

1− λ

)(
1 + λ

(
1 +

√
λ

1− λ

))
γw (ν)

(7)
there exists a function β ∈ KL such that ∀t ≥ t0 ≥ ∆:

|xd (t)| ≤ β (|xd (t0)| , t− t0) + γ
(
‖w‖[t0,t]

)
. (8)

Proof. First we have ∀t ≥ t0 ≥ ∆:

|xd (t)| ≤ βd (|xd (t0)| , t− t0) + γd

(
‖x‖[t0,t]

)
where βd (ν, t) = 1t<∆ν + 1t≥∆e

−1/ε(t−∆) with arbitrary
ε > 0 (1t<∆ is the characteristic function whose value is
1 if t < ∆ and 0 otherwise) and γd (ν) = ν. Note that
βd ∈ KL and γd ∈ K∞. Defining y (t)

.
= γx (|xd (t)|) we

can have ∀t ≥ t0 ≥ ∆:

|y (t)| ≤ βy (|y (t0)| , t− t0) + γy

(
‖x‖[t0,t]

)
where βy (ν, t) = γx

(
βd
(
γ−1
x (ν) , t

))
∈ KL and γy (ν) =

γx (ν) ∈ K∞.

Invoking the Small-Gain Theorem (Jiang et al., 1994,
Theorem 2.1), with β1 (ν, t) = βx (ν, t), γy1 (ν) = ν,
γu1 (ν) = γw (ν), β2 (ν, t) = βd (ν, t), γy2 (ν) = γx (ν),

γu2 (ν) = 0, and ρ1 = ρ2 = 1/
√
λ− 1, we can get functions

β′, β′′ ∈ KL such that ∀t ≥ t0 ≥ ∆:



|x (t)| ≤β′
(∣∣∣∣ x (t0)
γx (|xd (t0)|)

∣∣∣∣ , t− t0)+ γ
(
‖w‖[t0,t]

)
≤β′′ (|xd (t0)| , t− t0) + γ

(
‖w‖[t0,t]

)
for every γ ∈ K∞ which satisfies (7). Because it must hold
that β′′ (ν, 0) ≥ ν we can arrive at (8) with β (ν, t) =
β′′ (ν,max {0, t−∆}). 2

Define k (t)
.
= max {k ∈ Z≥0 |kTs + δk ≤ t}, the index of

the last sampling which arrived at the controller before
time t. With this definition we can write:

ẋ (t) = Ax (t) +BK
(
x
(
t− δk(t)

)
+ x̃ (t)

)
= (A+BK)x (t) +BK (θx (t) + x̃ (t)) (9)

where θx (t)
.
= x

(
t− δk(t)

)
− x (t) and x̃ (t)

.
= x̂ (t) −

x
(
t− δk(t)

)
.

Lemma 3. There exists a sufficiently small, but strictly
positive, δ̄max, such that if δmax ≤ δ̄max then the following
ISS relation, ∀t ≥ t0 ≥ ∆:

|xd (t)| ≤ βx (|xd (t0)| , t− t0) + γx

(
‖x̃d‖[t0,t]

)
(10)

holds where βx ∈ KL and γx ∈ K∞ is a linear function.

Proof. A standard result on ISS for linear systems is that
the system defined by (9) follows

|x (t)| ≤ β̃x (|x (t0)| , t− t0)+ γ̃x

(
‖θx‖[t0,t]

)
+ γ̃x

(
‖x̃‖[t0,t]

)
(11)

where β̃x ∈ KL and γ̃x ∈ K∞ is a linear function. For ex-

ample one can take β̃x (ν, t) = ce−σtν and γ̃x (ν) = c‖BK‖
σ ν

where c > 0 and σ > 0 are such that
∥∥e(A+BK)t

∥∥ ≤ ce−σt
∀t ≥ 0.

We also have from the first line in (9), ∀t ≥ ∆:

|θx (t)| =

∣∣∣∣∣−
∫ t

t−δk(t)
Ax (τ) +BKx

(
τ − δk(τ)

)
+BKx̃ (τ) dτ

∣∣∣∣∣
≤δmax (‖A‖+ ‖BK‖) ‖x‖[

t−δk(t)−δk(t−δk(t))
,t
]+

δmax ‖BK‖ ‖x̃‖[t−δk(t),t]
≤δmax (‖A‖+ ‖BK‖) |xd (t)|+
δmax ‖BK‖ |x̃d (t)| . (12)

For the last inequality we used the fact that ∆ ≥ 2δmax.
Substituting this into (11), we get (6) with

γx (ν) = γ̃x (δmax (‖A‖+ ‖BK‖) ν)

γw (ν) = γ̃x (δmax ‖BK‖ ν) + γ̃x (ν)

(we used the fact that γ̃x is a linear function). Choosing
δ̄max such that γ̃x

(
δ̄max (‖A‖+ ‖BK‖) ν

)
≤ ν ∀ν, (10)

follows by Lemma 2. 2

Define k̄ (t) = bt/Tsc. Another way to expand (9) is as
follows, ∀t ≥ δ0:

ẋ (t) = Ax(t) +Bu(t) = Ax(t) +BKx̂(t)

= Ax(t) +BK
(
x̂
(
t+ δk̄(t)

)
+ x̂ (t)− x̂

(
t+ δk̄(t)

))
= Ax(t) +Bu

(
t+ δk̄(t)

)
+BK

(
θe

(
t+ δk̄(t)

)
+ θx (t)

)
(13)

where θe (t)
.
= x̃

(
t− δk(t)

)
− x̃ (t). For t ≥ Ts + δ1,

t 6= kTs + δk ∀k, the state estimate evolves according to
(4) and thus the estimation error, x̃, evolves according to

˙̃x (t) = ˙̂x (t)− ẋ
(
t− δk(t)

)
=Ax̃ (t)−BK

(
θe (t) + θx

(
t− δk(t)

))
. (14)

Denoting

w (t)
.
=−BK

(
θe (t) + θx

(
t− δk(t)

))
,

wd
k
.
=

∫ (k+1)Ts+δk

kTs+δk

eA(k+1)Ts+δk−tw (t) dt,

we have that ∀k ≥ 1:

ck+1 − xk+1 = c ((k + 1)Ts)− x ((k + 1)Ts)

= eTsAx̃ (kTs + δk) +wd
k
.
= eTsAx̃k +wd

k (15)

where c is the quantization parameter defining the center
of the quantizer. In (Sharon and Liberzon, 2010, Propo-
sition 2) we proved that if the system satisfies (15), then
the following holds:

Corollary 4. There exist functions βe,d ∈ KL and γe,d ∈
K∞ such that ∀k ≥ k0 ≥ 1:

|x̃k| ≤βe,d (|x̃k0 | , k − k0;µk0) + γe,d

(∥∥wd
∥∥
{k0,k−1} ;µk0

)
µk ≤ψ

(
‖x̃‖{k0,k−1} ;µk0

)
. (16)

The function ψ (·, ·) as a function of its first argument when
its second argument is fixed, is continuous, non-decreasing
and non-negative. As a function of its second argument
when its first argument is fixed, it is continuous.

Lemma 5. The delayed estimation error, x̃d, satisfies the
following relation, ∀t ≥ t0 ≥ ∆:

|x̃d (t)| ≤β̃e
(
|x̃d (t0)| , t− t0;µk(t0)

)
+

γ̃e

(
δmax ‖x̃d‖[t0,t] ;µk(t0)

)
+

γ̃w

(
δmax ‖xd‖[t0,t] ;µk(t0)

)
. (17)

where β̃e ∈ KL and γ̃e, γ̃w ∈ K∞.

Proof. We can bound wd
k, ∀k ≥ 1, as∣∣wd

k

∣∣ ≤eTs‖A‖ ‖BK‖∫ (k+1)Ts+δk

kTs+δk

|θe (t)| dt+

eTs‖A‖ ‖BK‖Ts ‖θx‖[kTs,(k+1)Ts]
.

We can also bound the estimation error between updates,
∀k ≥ 1 and ∀t ∈ [kTs + δk, (k + 1)Ts + δk+1]:

|x̃ (t)| ≤e(Ts+δmax)‖A‖ |x̃k|+ e(Ts+δmax)‖A‖
∫ t

kTs+δk

|w (τ)| dτ

≤e(Ts+δmax)‖A‖ |x̃k|+ e(Ts+δmax)‖A‖ ‖BK‖×(∫ t

kTs+δk

|θe (τ)| dτ + (Ts + δmax) ‖θx‖[kTs,t−δk]

)
.

Combining these two bounds with (16) and the first
inequality in (12), we can arrive at, ∀t ≥ ∆:

|x̃ (t)| ≤βe,e
(∣∣x̃k(t0)

∣∣ , k (t)Ts − k (t0)Ts;µk(t0)

)
+

γe,θ

(
max

k∈[k(t0),k(t)]

∫ min{(k+1)Ts+δmax,t}

kTs+δk

|θe (τ)| dτ;µk(t0)

)
+

γe,e

(
δmax ‖x̃‖[k(t0)Ts−δmax,t]

;µk(t0)

)
+

γe,x

(
δmax ‖x‖[k(t0)Ts−2δmax,t]

;µk(t0)

)
. (18)

where βe,e ∈ KL and γe,θ, γe,x, γe,e ∈ K∞.



From the definition of θe, ∀t ≥ min {2δ0, Ts + δ1}:

θe (t) =−
∫ t

t−δk(t)

˙̃x (τ) dτ −
∑

τ∈(t−δk(t),t]∩χ

(
x̃ (τ)− x̃− (τ)

)
(19)

where χ
.
= {t ≥ 0 |∃k ∈ N such that τ = kTs + δk }. Each

t ∈ χ affects θe through the second term in (19)
only in a time interval of length at most δmax. The
set
(
kTs + δk − δk(kTs+δk), (k + 1)Ts + max {δk, δk+1}

]
∩χ

contains at most two element ∀k ≥ 1. Using also (14),
we can finally arrive at the bound: ∀k ≥ 2 and ∀t ∈
[kTs + δk,max {(k + 1)Ts + δk, (k + 1)Ts + δk+1}):∫ t

kTs+δk

|θe (τ)| dτ ≤ 4δmax ‖x̃‖[kTs,t] +

δmax (Ts + δmax) (‖A−BK‖+ ‖BK‖) ‖x̃‖[kTs−δk−1,t]
+

δmax (Ts + δmax) 2 ‖BK‖ ‖x‖[kTs−δk−1−δ(kTs−δk−1),t−δk] .

(20)

Using (20) in (18) and the same argument we used at the
end of the proof of Lemma 2 to move from a bound on
|x (t)| to a bound on |xd (t)|, we can arrive at the result
stated in the lemma. 2

A corollary of (Sharon and Liberzon, 2010, Theorem 4)
gives us the following:

Corollary 6. Assume that (17) holds, and that there exist
r1 > r0 ≥ 0, and λ < 1 such that ∀r ∈ [r0, r1]:

γ̃e
(
δmaxr;µk(∆)

)
≤ λr (21)

and
1

1− λ

(
β̃e
(
|x̃d (∆)| , 0;µk(∆)

)
+

γ̃w

(
δmax ‖xd‖[∆,∞] ;µk(∆)

)
< r1. (22)

Then ‖x̃d‖[∆,∞] < r1.

A corollary of the Small-Gain Theorem (Jiang et al., 1994,
Theorem 2.1) gives us the following local result:

Corollary 7. Let x1, x2, w be three signals satisfying
∀t ≥ t0 ≥ 0

|x1 (t)| ≤β1 (|x1 (t0)| , t− t0) + γ1,x

(
‖x2‖[t0,t]

)
+

γ1,w

(
‖w‖[t0,t]

)
+ d1

|x (t)| ≤β1 (|x2 (t0)| , t− t0) + γ2,x

(
‖x1‖[t0,t]

)
+

γ2,w

(
‖w‖[t0,t]

)
+ d2

where β1, β2 ∈ KL, γ1,x, γ1,w, γ2,x, γ2,w ∈ K and d1 ≥ 0,
d2 ≥ 0. Assume that for some r1 > r0 ≥ 0 the small-gain
condition

γ1,x (γ2,x (r)) < r, ∀r ∈ [r0, r1]

holds and it can be guaranteed that

‖x1‖[0,∞] < r1, ‖x2‖[0,∞] < γ−1
1,x (r1) .

Then we can get that ∀t ≥ t0 ≥ 0:∣∣∣∣ x1 (t)
x2 (t)

∣∣∣∣ ≤β(∣∣∣∣ x1 (t0)
x2 (t0)

∣∣∣∣ , t− t0)+ γ
(
γ1,w

(
‖w‖[t0,t]

))
+

γ
(
γ2,w

(
‖w‖[t0,t]

))
+ d

where β ∈ KL and γ ∈ K. Furthermore, in the limit as
d1 → 0, d2 → 0, r0 → 0, we get d = 0.

With these two corollaries we derive the following lemma:

Lemma 8. For any d′ > 0, x′max, x̄max and µmax there
exists a sufficiently small, but strictly positive, δ̄max, such
that if δmax ≤ δ̄max then the following ISS relation,
∀t ≥ t0 ≥ ∆:

|x̃d (t)| ≤βe (|x̃d (t0)| , t− t0) + γe

(
δmax ‖xd‖[t0,t]

)
+ d′

(23)

where βe ∈ KL and γe ∈ K holds for all ∀ |x̃d (∆)| ≤ x′max,
∀ ‖xd‖[∆,∞] ≤ x̄max, and ∀µk(∆) ≤ µmax. Furthermore, for

∀δmax ≤ δ̄max, we can write

‖x̃d‖[∆,∞] ≤ γ̄1 (δmax) + γ̄e (x̄max; δmax) (24)

where

lim
δmax↘0

γ̄1 (δmax) = sup
µ∈[0,µmax]

β̃e (x′max, 0;µ)

lim
δmax↘0

γ̄e (x̄max; δmax) = 0 (25)

Proof. We first note that for any x′max ≥ 0, x̄max ≥ 0,

µmax ≥ 0, r1 > maxµ∈[0,µmax] β̃e (x′max, 0;µ), and r0 ∈
(0, r1), one can find δ̄max > 0 and λ < 1 for which the
assumptions in Corollary 6 are satisfied ∀ |x̃d (∆)| ≤ x′max,
∀ ‖xd‖[∆,∞] ≤ x̄max, and ∀µk(∆) ≤ µmax if δmax ≤ δ̄max.

We remark that because γ̃e (r, µ), for any fixed µ, grows
faster than any linear function of r both at r = 0 and
r = ∞, one cannot choose r0 = 0 or r1 = ∞ and still
satisfy the assumptions in the Corollary.

Once the assumptions of Corollary 6 are satisfied, we can
replace µk(t0) in (17) with µ̄ = maxµ∈[0,µmax] ψ (r1;µ) and
write ∀t ≥ t0 ≥ ∆:

|x̃d (t)| ≤β̃′e (|x̃d (t0)| , t− t0) + γ̃′e

(
δmax ‖x̃d‖[t0,t]

)
+

γ̃′w

(
δmax ‖xd‖[t0,t]

)
,

‖x̃d‖[∆,∞] <r1 (26)

∀ |x̃d (∆)| ≤ x′max, ∀ ‖xd‖[∆,∞] ≤ x̄max, ∀µk(∆) ≤ µmax

and ∀δmax < δ̄max where β̃′e ∈ KL and γ̃′e, γ̃
′
w ∈ K. Taking

δ̄max to be smaller if necessary, we can also have

γ̃′e (δmaxr) < r ∀r ∈ [r0, r1] .

We can now use the local version of the Small-Gain
Theorem (Corollary 7), similarly to how we used the
Small-Gain Theorem in Lemma 2, and arrive at (23).

Note that when applying Corollary 7 to (26), we will have
d1 = 0 and d2 = 0. Thus we get that limr0→0 d

′ = 0. And
since we can choose r0 to be arbitrarily small by reducing
δ̄max, we can in turn make d′ arbitrarily small. Assume
now that (21) holds for some δmax = δ̄max. Then we can
replace the constant λ in (21) with a function λ (δmax)
such that (21) still holds for every δmax ≤ δ̄max, and
furthermore, limδmax↘0 λ (δmax) = 0. Looking at (22), it
is easy to see that we can upper bound ‖x̃d‖[∆,∞] with

γ̄1 (δmax) + γ̄e (x̄max; δmax) where

γ̄1 (δmax)
.
=

1

1− λ (δmax)
max

µ∈[0,µmax]
β̃e (x′max, 0;µ) ,

and the remaining element on the left-hand side of (22) is
represented by γ̄e. Thus (24) and the second limit result
in (25) follows. Because limδmax↘0 λ (δmax) = 0, the first
limit result in (25) also follows. 2



Another corollary of (Sharon and Liberzon, 2010, Theorem
4) is as follows:

Corollary 9. Assume that (10) and (24) holds ∀ |x̃d (∆)| ≤
x′max, ∀ ‖xd‖[∆,∞] ≤ x̄max, ∀µk(∆) ≤ µmax, ∀δmax < δ̄max

for some x′max, x̄max, µmax and δ̄max. Set r′1 = x̄max.
Assume also that for some r′0 > 0, α > 0 and λ < 1,
∀r ∈ [r′0, r

′
1]:

γx ((1 + α) γ̄e (r; δmax)) < λr, (27)

and
1

1− λ
βx (|xd (∆)| , 0) +

1

1− λ
γx

((
1 +

1

α

)
γ̄1 (δmax)

)
< r′1, (28)

1

1− λ
γ̄1 (δmax) +

1

1− λ
γ̄e

((
1 +

1

α

)
(βx (|xd (∆)| , 0)) ; δmax

)
< γ−1

x (r′1) .

(29)

Then ‖xd‖[∆,∞] < r′1 and ‖x̃d‖[∆,∞] < γ−1
x (r′1).

We remark that having (29) imply ‖x̃d‖[∆,∞] < γ−1
x (r′1)

given (27) relies on the linearity of γx which was estab-
lished in Lemma 3.

We are now ready to prove Theorem 1

Proof. Assume x′max, µmax are given. Choose r′1 such that

r′1 > βx (x′max, 0) + γx

(
sup

µ∈[0,µmax]

β̃e (x′max, 0;µ)

)
. (30)

We can now find δ̄max > 0 for which (23) holds with
x̄max = r′1 and γ̄1, γ̄e (due to (30) and (25)) such that

βx (x′max, 0) + γx (γ̄1) <r′1
γx (γ̄1 + γe (βx (x′max, 0) ; δmax)) <r′1.

Taking a smaller δ̄max if necessary, we can now also satisfy
the assumptions of Corollary 9. This establishes that if
xd (∆) ≤ x′max, x̃d (∆) ≤ x′max, µk(∆) ≤ µmax, and

δmax ≤ δ̄max then ∀t ≥ t0 ≥ ∆ both (10) and (23) holds,
as well as ‖xd‖[∆,∞] < r′1, and ‖x̃d‖[∆,∞] < γ−1

x (r′1).

Taking an even smaller δ̄max if necessary, we can make the
small-gain condition between (10) and (23),

γx (γe (δmaxr)) < r ∀r ∈ [r′0, r
′
1] ,

hold ∀δmax < δ̄max, so that we can apply the local Small-
Gain Theorem (Corollary 7) one more time and arrive at
∀t ≥ t0 ≥ ∆:∣∣∣∣( xd (t)

x̃d (t)

)∣∣∣∣ ≤ β′(∣∣∣∣( xd (t0)
x̃d (t0)

)∣∣∣∣ , t− t0)+ d (31)

where β′ ∈ KL. The last term above, d, is nonzero due to
d′ > 0 and r′0 > 0 when δmax > 0. However, we can make
both d′ and r′0 arbitrarily small, and therefore also d, by
taking a sufficiently small δmax > 0. Thus we can replace
d with γ (δmax) ∈ K.

We now bound the evolvement of x and x̂ from t = 0
to t = ∆. Initially x̂ = 0 and at the first sampling by
our quantizer |x̂ (δ0)| < 2 |x (0)|, leading to ‖x̂‖[0,Ts+δ1] ≤
e(Ts+δmax)‖A+BK‖2 |x (0)| .= ρ1 |x (0)|. Thus

‖x‖[0,Ts+δ1] ≤ e
(Ts+δmax)‖A‖ |x (0)|+

(Ts + δmax) e(Ts+δmax)‖A‖ ‖BK‖ ρ1 |x (0)| .= ρ2 |x (0)| .
Then

∣∣x̃− (Ts + δ1)
∣∣ ≤ (ρ1 + ρ2) |x (0)|. Our quantizer

has the property that |x̃ (Ts + δ1)| ≤
∣∣x̃− (Ts + δ1)

∣∣, so
that |x̂ (Ts + δ1)| ≤ (ρ1 + 2ρ2) |x (0)|. Repeating these
arguments, we can derive the bound |xd (∆)| ≤ ρ |x (0)|
and |x̃d (∆)| ≤ ρ |x (0)| for some ρ > 0.

Noting that k (∆) = 2, we can also bound µk(∆) ≤ sΩ2
out.

To complete the proof, find δ̄max such that (31) holds for
x′max = ρxmax and µmax = sΩ2

out, and set

β (ν; t)
.
= β′ (ρν,max {0, t−∆}) . 2

6. CONCLUSION

In this paper we showed that the “zoom out”/“zoom in”
mechanism that we developed in Sharon and Liberzon
(2010) maintains its stability property for sufficiently small
delays. While we proved the existence of a non-trivial delay
for which the system is still stable, we are yet to provide
a constructive method to verify whether the system is
stable for a given delay. We also plan to extend these
results to non-linear systems, along the lines of (Sharon
and Liberzon, 2010, Section VI), and to show that the
stability to external delays we proved in our earlier work
still holds in the presence of delays.
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